リストデータ形式のデータ収集系を用いた 放射性エアロゾル測定の紹介

小島康明

図1 エアサンプラーで空気中エアロゾル捕集中の フィルター表面の放射線計数。横軸は捕集開始 後からの経過時間。

程度)ため,β線に加えてα線の測定が可能であ り,さらに,入射窓は遮光膜も兼ねているため, 特別な測定チャンバーを必要としないという特徴 を有する。以下の測定は実験室の空気中(開放空 間)で行った。

PIPS 検出器からの信号はプレアンプで波形処 理した後、デジタル式のデータ収集装置(テクノ エーピー APV8002)を用いて時間情報付きのリス トデータ形式で記録した。ここで、リストデータ 形式とは、一本の放射線を検出するごとに(以下、 イベントと呼ぶ)、その検出時刻(本装置の場合は 0.625ns 単位)とエネルギーを箇条書きのように記 録する方式である。本装置の場合、測定中にリア ルタイムでエネルギースペクトルを見ることがで きないという短所はある。しかしながら、自作のプ ログラムによるデータ解析の工夫次第で、測定終 了後に様々な情報を引き出せるという利点がある。 放射線管理の場ではリストデータ形式での測定は 一般的ではないが、活用の可能性は大いにあると

はじめに

放射線管理においては放射線計測は重要な基盤 技術の一つである。このうち,環境モニタリング や汚染検査などの管理実務では,伝統的にはエネ ルギースペクトル,あるいはエネルギー情報を含 まない計数のみの測定が用いられている。一方, 放射線計測データの収集方法にはこれ以外にリス トデータ形式と呼ばれるものがあり,原子核・素 粒子実験をはじめとした分野ではこちらの方式が 一般的になっている。本稿では,環境モニタリン グ等への適用を念頭に,空気中エアロゾルに付着 した天然放射性核種のリストデータ形式による測 定を紹介する。

エアロゾルの捕集

室内空気中のエアロゾルはハイボリュームエア サンプラーで捕集した。適切な捕集時間を決める ため、GMサーベイメータを用いて、捕集中のフィ ルター表面における計数を数分おきに計測した。 その結果を図1に示す。時間とともに計数が増え ていっており、空気中のエアロゾルに付着してい る天然放射性核種がフィルターに捕集されている ことが分かる。70~90分で計数が飽和することか ら、以下の実験での捕集時間を90分と決めた。90 分間の吸引空気量はおよそ45m³である。

エアロゾル捕集フィルターの測定と解析例

フィルターに付着した天然放射性核種の測 定は、PIPS型シリコン検出器(キャンベラ CAM600AM)を用いて行った。この検出器は入 射窓の厚さが極めて薄い(シリコン換算で2µm 考えている。以下では、リストデータを解析するこ とで得られる情報について、いくつかを紹介する。

図2はエアロゾル捕集後のフィルターを測定し て得られたエネルギースペクトルである。天然放 射性核種は α 線と β 線を放出する (γ 線も放出す るが, PIPS 検出器では感度が低く測定できない)。 0~500ch 付近に表れている成分は主に β 線に起 因し,それより高いところは α 線に起因する領域 である。本来、 α 線は線スペクトル (ピーク形状) を示すはずだが、空気やフィルターによるエネル ギー損失の影響があるため、なだらかな連続的な エネルギー分布として観測されている。

次に、リストデータに記録されている時間情報 を利用した例として、図3を示す。これは隣接 するイベントの検出時間差を調べて、頻度分布 図にしたものである。0~1ms付近に特徴的な 傾きが見られる。この部分を指数関数でフィッ ティングして半減期を求めたところ、168µsが得 られ、²¹⁴Poの半減期の文献値164.3µs¹⁾とほぼ一 致した。²¹⁴Poはウラン系列に属する放射性同位 元素であり、ラドン温泉に含まれる成分として 知られている²²²Rnの子孫核種である。崩壊連鎖

図2 フィルターから放出された放射線のエネルギー スペクトル。

図3 フィルターから放出された放射線検出事象の時 間差の頻度分布。

²¹⁴Bi \rightarrow ²¹⁴Po \rightarrow ²¹⁰Pb に起因するイベントが時間差 0 ~ 1 ms 付近に表れていることになる。

このことを逆に使えば、ある時間特性を持つイ ベントのみを取り出して, データ解析の対象に することもできる。これを行った例が図4であ る。図4の測定では、エアロゾルを捕集したフィ ルターと一緒に、微弱の¹³⁷Cs β線源を測定して いる。図4の黒線は全ての測定イベントを解析対 象としたエネルギースペクトルであり、当然なが ら.¹³⁷Csと天然放射性核種の両成分が含まれてい る。図4の青線はイベントの時間差が170us(半 減期)以内のもののみを解析対象とし、そのエネ ルギースペクトルをプロットしたものである。偶 然成分を除けば¹³⁷Cs線源に起因する放射線はこ の時間差内には入ってこないはずであり、実際、 青線のスペクトルには¹³⁷Cs 特有の内部転換電子 のピークは見えていない。このことから、時間情 報を活用することで、放射性核種ごとにデータを (ある程度であるが)分離できることがわかる。

おわりに

時間情報付きリストデータ形式で放射線計測の データを保存することで自由度の高い解析が可能 になり、伝統的な測定手法では得ることが難しい 情報を得ることができる。放射線モニタリングな ど放射線管理への活用を図っていきたい。

参考文献

 R. B. Firestone, V. S. Shirley (Editors), Table of Isotopes 8th edition, John Wiley & Sons, (1996).

図4 フィルターと¹³⁷Cs 線源を同時に測定したときの エネルギースペクトル。黒線は全ての測定イベン トを,青線は検出時間差が170µs 以内のイベント のみを解析対象にしたときのスペクトル。300ch 付近のピークは¹³⁷Cs の内部転換電子である。